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Foraging is a complex and cognitively demanding behavior.

Although it is often regarded as a mundane task, foraging

requires the continuous weighting and integration of many

sources of information with varying levels of credence. Bats are

extremely diverse in their ecology and behavior, and thus

demonstrate a wide variety of foraging strategies. In this

review, we examine the different factors influencing the

decision process of bats during foraging. Technological

developments of recent years will soon enable real-time

tracking of environmental conditions, of the position and quality

of food items, the location of conspecifics, and the bat’s

movement history. Monitoring these variables alongside the

continuous movement of the bat will facilitate the testing of

different decision-making theories such as the use of

reinforcement learning in wild free ranging bats and other

animals.
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Introduction
Bats offer an interesting opportunity for studying foraging

decision making. Their immense diversity with ca.

1300 species abundant in different habitats all over the

globe [1,2] and their flight-related high energetic

demands [3–5] probably drove their many different for-

aging strategies, and wide diversity of food sources, from

nectar and fruits to meat and blood. Their fast mobility

allows them to move far and provides ample opportunities

for foraging decisions [6�]. Bats exhibit multimodal navi-

gation system [7] relying on vision and acoustics, and

perhaps also on magnetic perception [8,9] and olfaction.

Bats also demonstrate a variety of social structures [10�]
www.sciencedirect.com 
and social communication systems that enable different

means of social information use [11–17]. The diversity of

foraging strategies and the range of information acquisi-

tion mechanisms posit bats as an appealing mammalian

model to the study of foraging decision-making.

With both immediate and long-term effects on the

animal’s wellbeing, foraging greatly affects the animal’s

fitness and thus requires adequate decision-making

(Figure 1). The most fundamental decision might be

when to forage, which depends on internal factors, such

as fat reserves, and on external factors, such as the

current weather. Other decisions include where to for-

age and whether to forage alone or to join others. These

decisions occur on varying temporal and spatial scales. A

migratory species has to decide once a year where to

migrate to, while once it has arrived at the foraging site it

decides daily (or continuously) whether to exploit famil-

iar patches or to explore new ones.

The decision process must reasonably weigh current

sensory input, social information, previously learned

information, genetic or developmental predispositions

(for example of food preferences) and environmental

conditions. While the different sources of information

available to a wild animal may be directly or indirectly

estimated by researchers, and its performed actions can

be measured (e.g. by tracking the animal), the decision

process itself is generally unknown (Figure 1, center) and

is thus often the focus of laboratory cognitive research.

Inputs for foraging decision making – sources
of information
Direct sensory information

The immediate source of information for a foraging bat is its

sensors. The fact that many bat species heavily rely on

acoustics to find and consume food has drawn much atten-

tion [18]. Many studies demonstrated species-specific spe-

cialization of auditory production and perception to forag-

ing ecology [2]. However, many bats combine

complementary sensory modalities, primarily vision, with

echolocation when foraging [19,20]. Due to the short sens-

ing range of echolocation (up to dozens of meters for large

objects [21]), many bats probably use vision for long dis-

tance navigation but also obstacle avoidance. How bats

integrate vision with echolocation is still poorly understood.

Egyptian fruit-bats (Rousettus aegyptiacus) were recently

shown to transfer echo-based acoustic information into

visual information [22]. Olfactory cues also play a role in

food detection and identification in many fruit-eating bats

[23,24] and other sensory modalities have not been yet

thoroughly explored.
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The foraging decision making framework.

Bats continuously integrate information from various sources: sensory cues about the location and quality of the food, social indicators such as

the foraging behavior of conspecifics, memory of past foraging events, internal preferences (ontogenetic or genetic) for specific food sources, and

current environmental conditions. The integration of this knowledge guides three main decisions: when to forage (now, or wait for better

opportunities)? how to forage (i.e. what movement or social strategies to adopt)? and where to forage? These decisions ultimately define the bat’s

movement patterns. This is a recurring process: movement results in new information which in turn might require adjustment of decisions.
Social information

Another important source of information comes from the

social environment [25,26��]. Many bat species roost in

coloniesandforage ingroups or inproximity toconspecifics.

As bats constantly emit echolocation sound-signals to sense

their environment and search for prey, public information is

continuously broadcast, intentionally or not. For instance,

when a bat is attempting to attack prey, it will emit typical

series of echolocation signals [26��,27] which would then

reveal the detection of the prey to any nearby conspecific

[17,28]. Many types of insects (and other prey), can be

found in dense, though ephemeral, patches. In this case

social foraging is often beneficial for the individual bats,

since prey detection becomes the bottleneck of the forag-

ing, and the competition between conspecifics in a patch is

relatively small. These situations should thus encourage

social foraging [17,28]. An example of this behavior can be

seen during the summer in northern Israel, where the

greater mouse-tailed bat (Rhinopoma microphyllum) feeds

almost exclusively on queen carpenter ants [29]. The bats

search for thequeen swarms across dozensof kilometers per

night, and use social information in order to improve their

search [30]. Another example is the Mexican fish-eating bat

(Myotis vivesi), which preys on small fish in open sea

(specifically, in the Sea of Cortez) [31]. The challenges
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this bat faces, are quite similar to those confronted by

R. microphyllum, namely, to locate ephemeral, but large,

swarms of prey. Interestingly, the two species display

similar social foraging strategies [32��].

Furthermore, bats can also acquire echolocation-based

information about the presence of prey from hetero-

specifics, and they will do so more readily when the

hetero-specifics rely on similar prey [33]. Relying on

conspecifics for enhancing food detection is not limited

to insectivorous bats. The nectarivorous Pallas’ long-

tongued bat (Glossophaga soricina) has been shown to

follow conspecifics in order to ease flowers detection [34].

Social interactions can also mediate learning of new food

resources as has been shown in Seba’s short-tailed bat

(Carollia perspicillata) [35]. A similar behaviour was recently

reported in the tent-making bats (Uroderma bilobatum) that

adapt their feeding preferences according to social cues [36],

but here, the bats were also shown to prefer food that was

eaten by an unfamiliar conspecific [37], a strategy that is

useful for increasing their fruit repertoire. Another case of

food-related social learning was demonstrated in the fringe-

lipped bat (Trachops cirrhosis) which feeds on anurans and

detects prey by eavesdropping on mating calls. In the lab,
www.sciencedirect.com
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this bat could learn to associate palatable food items with

novel calls [38], and even with artificial sounds [39], after

observing the behavior of another demonstrator bat. Corre-

spondingly, bat roosts and foraging sites probably serve as

centres for different sorts of information transfer

[14,26��,40,41].

Memory

Bats generally possess highly accurate spatial memory. In

some species individuals migrate thousands of kilometers

and return to the same roost year after year [42]. Other

bats return night after night to the same fruit tree located

dozens of kilometers from their roost [43]. Bats also show

excellent spatial memory at scales of centimeters [44–46].

When food location is predictable, and thus does not have

to be searched for, spatial memory becomes more impor-

tant than social cues. In fact, under such circumstances,

which are common in fruit-eating bats, the main decision

a bat makes might be whether to exploit previously

visited fruit-trees or to explore new ones. The Egyptian

fruit-bat feeds on a variety of fruit types and probably

remembers the accurate position of many fruitful trees

[43]. Indeed, Egyptian fruit-bats commute to their forag-

ing sites individually without conspecifics [32��], even

though they are constantly involved in social interactions

in their roost [15,47], and often also on foraging trees [47].

As fruit trees exhibit annual periodicity and bats return to

them yearly, it is intriguing to hypothesize that they

possess some sort of an episodic-like memory remember-

ing what trees are available at certain times (when) and

locations (where) [7,48,49,50��,51]. Because these bats can

live several decades [52], such a cognitive ability could be

highly beneficial.

The location of insects can occasionally be predictable as

well. For example, when insects appear in high densities

at specific sites on a regular basis, such as in the case of

Pipistrelle bats that hunt insects under street-lights.

Another example is the greater mouse-eared bat (Myotis
myotis) that gleans ground-dwelling insects such as cara-

bid beetles [53]. Because their prey can be abundant in

the same ground-patches over many nights (depending

on weather and habitat conditions) M. myotis bats repeat-

edly use a small set of individually preferred foraging sites

[32��,53], similarly to fruit bats [32��,43].

Nectarivorous bats may remember the locations of mul-

tiple food sources (flowering plants) which offer a limited,

but replenishing, resource of nectar. In accordance with

their need to remember the locations of multiple sources,

these bats have been suggested to have an extremely

developed spatial memory [54]. They do, however, face

another type of decision: in what order should they visit

these sources and how often should they re-visit them

[55–57,58��]. Females of the lesser long-nosed bat (Lep-
tonycteris yerbabuenae) face a similar challenge. They

migrate every spring from central and southern Mexico
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to the northern Sonoran Desert, where they aggregate in

dense maternity roosts and forage on nectar, and then

fruit, offered by columnar cacti [59]. The gravid females

commute dozens of kilometers to familiar foraging loca-

tions, with high fidelity to foraging-areas between conse-

cutive nights [32��,60]. Interestingly, L. yerbabuenae fly

long distances towards foraging sites, even though alter-

native sites are available much closer to their roost,

similarly to R. aegyptiacus [32��,43]. This behavior is

probably related to the high density of the bats in their

day roost, imposing high competition which might be

resolved by spreading according to resource profitability

as predicted by the ideal free distribution theory [61].

Environment

Environmental conditions directly influence prey availabil-

ity (e.g. [62]), but they also affect bats’ hunting abilities.

Atmospheric conditions may interfere with echolocation

[63], and indeed bats have been suggested to avoid fog [64].

However, bats do forage in light rain [65] and the major

effect of rain on bats’ activity has been suggested to be due

to the added energetic costs to body temperature mainte-

nance [66]. On the other hand, bats usually do not fly in

heavy rain. Playback sounds of heavy rain delayed the

emergence of common big-eared bats (Micronycteris micro-
tis) and Pallas’s mastiff bats (Molossus molossus) from their

natural roosts [67], demonstrating the use of this informa-

tion for ad-hoc foraging decision-making. Environmental

conditions also influence the bat’s own predation risk. It has

been suggested that bats reduce their activity when

the moonlight is intense due to an increased predation risk

(a.k.a. lunar-phobia). However, while true for some species

(mainly frugivorous bats in the tropics [68]), other species

are not affected by moonlight [68,69].

Output of foraging decision making –
movement and behavior
The output of the decision process, namely the movement,

has been historically harder to track, mostly because of the

small size of most bat species. However, recent technologi-

cal developments boosted our ability to follow bats’ forag-

ing in the wild. Miniature on-board tracking devices now

enable the collection of high-resolution spatiotemporal

data (GPS), bio-acoustic recordings, micro-movement

behaviors (e.g. with accelerometers), physiological condi-

tions (e.g. electroencephalography (EEG) and heart-rate

measurements), and environmental parameters (e.g. wind

speed, light conditions, ambient noise) [70,71,72�].

These measurements allow researchers to uncover bats’

choices under different conditions. For instance, M. vivesi
and R. microphyllum, which both feed on ephemeral

swarming prey (fish and ant queens, respectively), pres-

ent similar patterns of foraging movement (Figure 2),

namely, covering large volumes during social foraging

[30,32��]. In contrast, M. myotis and R. aegyptiacus, which

feed on predictable food (carabid beetles and fruit,
Current Opinion in Neurobiology 2020, 60:169–175
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Figure 2

(b)(a)
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Food predictability determines movement patterns.

(a) A bat species feeding on food items with predicted occurrence, Myotis myotis, directly commute to their foraging grounds and then return

directly to their roost. These bats mostly search for food in a solitary manner and return to the sane sites night after night. (b) In contrast, Myotis

vivesi bats that feed on ephemeral prey, search for food in a more stochastic manner, covering much larger areas during foraging. These bats

tend to forage socially. Colors indicate different individuals. Figures reprinted with permission from Ref. [32��].
respectively), demonstrate another type of foraging

movement pattern: solitary (or socially independent) long

commutes to specific known locations (Figure 2) [32��].

Analysis and modeling of such movement data will shed

new light on the decision process itself in the near future.

The field of movement ecology is growing rapidly [73]

(we will not review it here) and is contributing enhanced

analytical procedures to the understanding of foraging

decisions.

Decision making – the endpoint of learning
How an animal makes decisions is a subject of much

interest. The process involves weighting information

sources, including not only the current context but also

historical accounts. Furthermore, rationality, or perfect

utility maximization, is rarely observed (e.g. [74,75]).

Decision making is tightly dependent upon learning, a

process of which we know little about, and which many

theories try to explain.

One of the main gaps in our understanding is the ontog-

eny of foraging decision making. How do young bats learn

to forage? In many species of bats, the young forage

independently within a few weeks, a period in which

they must learn to control flight and echolocation [76].

The neotropical common big-eared bat (M. microtis)
gleans large insects, such as dragonflies, from vegetation

surfaces. In this species, mothers have been shown to

provision their weaned young [77], a phenomenon that

was rarely documented in bats. Since the large prey

requires some expertise in handling it, provisioning of
Current Opinion in Neurobiology 2020, 60:169–175 
young bats may facilitate the learning of this task. The

presentation of the prey to pups, before they are able to

capture it by themselves, can also help them create an

acoustic image of this prey [77]. In a lab experiment,

lactating G. soricina mothers were shown to transfer nectar

to their young by regurgitation [78��]. Although such

behavior may shape the young bat’s food preferences,

this kind of learning was not demonstrated. Many bats

exhibit very long commutes to foraging sites. Such com-

mutes have been demonstrated in M. myotis, R. aegyptia-
cus, L. yerbabuenae and others. How pups learn to navigate

to the foraging sites and what is the mothers’ role (if any)

in this procedure is yet to be revealed.

Another gap is our lack of understanding of how momentary

data acquisition translates to decisions. Observations of

many animal species revealed that the decision-making

can be sometimes approximated using simple rules

[79,80�]. From the individual’s point of view, optimal-

foraging theory states that an animal should exploit a given

patch as long as staying in it is more beneficial than moving

to another average patch (i.e., the marginal value theorem

[81]). These simple models indeed capture some of the

economic essence of foraging, but their main deficit in

describing animals in the wild is their assumption of an

agent’s complete knowledge. Animals often forage in sto-

chastic environments, where food quality and quantity vary

in space and time with some level of uncertainty. To cope

with changes in the environment an animal needs to be able

to continuously learn and adjust to its surroundings. More-

over, the animal’s decision space is usually multidimen-

sional: thequantity oftheconsumed foodisonly onefactor it
www.sciencedirect.com
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has to evaluate, and many other elements, such as the

nutritional value of specific items, also play an important

role in foraging decisions. For instance, fruit bats that feed

on a great variety of fruits, must choose between fruits of

different nutritional values (e.g. protein-rich versus carbo-

hydrate-rich versus fat-rich, etc.). Furthermore, simple

decision models usually deal with the average individual,

while differences in behavioral traits (i.e. personality) and in

individual knowledge might greatly influence foraging

decisions [82,83].

It has been postulated that considering foraging as a

reinforcement-learning task, a well-established decision

making framework, would enhance our understanding of

animal foraging [84]. Much of the reinforcement-learning

literature has been dedicated to learning and decision-

making in various foraging tasks under artificial laboratory

conditions, which narrow down the decision space. These

studies revealed a wide-range of cognitive and psycho-

logical decision making phenomena [85], including the

effect of social-learning [86–88] and risk-sensitivity [89].

Nevertheless, laboratory experiments are limited to very

specific situations. Until recently, conducting controlled

foraging experiments in the wild would have been

extremely difficult and bounded with partial data. How-

ever, advanced data collection technology now paves the

way to test individualforaging models, and specifically

reinforcement-learning based decision-making processes,

in the wild. We will soon be able to continuously monitor

the location of a free-ranging bat, track its foraging

decisions, estimate the nutritional benefits and the ener-

getic costs of these decisions, and even evaluate the

alternative (unchosen) foraging possibilities. These

assessments will be facilitated by increased environmen-

tal data collection, for instance, using satellite and drone-

based imaging, creating accurate three-dimensional

maps. Moreover, the sharp improvement in movement

data resolution makes it possible to manipulate resources

in the wild. Such manipulation has been conducted, for

example, on nectar feeding bats Glossophaga commissarisi
[90] and with the development of real-time tracking

acquisition, we will be able to manipulate individual bats.

Moving our focus to the bat’s natural environment will

enable countless possibilities to pinpoint the evolutionary

and ecologically relevant mechanisms that affect bats’

decision making. Reinforcement learning paradigms, and

other frameworks, that were developed for simple few-

choice decisions will have to be adapted to deal with these

interesting, but complex real-life situations.
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